This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Alkylation of Phosphorylmethylenetriphenylphosphoranes

O. V. Bykhovskaya^a; I. M. Aladzheva^a; I. V. Leontieva^a; P. V. Petrovskii^a; T. A. Mastryukova^a; M. I. Kabachnii^a; A. N. Nesmeyanov^a

^a Institute of Organo-Element Compounds, Academy of Sciences of the USSR, Moscow, USSR

To cite this Article Bykhovskaya, O. V. , Aladzheva, I. M. , Leontieva, I. V. , Petrovskii, P. V. , Mastryukova, T. A. , Kabachnii, M. I. and Nesmeyanov, A. N.(1990) 'Alkylation of Phosphorylmethylenetriphenylphosphoranes', Phosphorus, Sulfur, and Silicon and the Related Elements, 51: 1, 262

To link to this Article: DOI: 10.1080/10426509008040796 URL: http://dx.doi.org/10.1080/10426509008040796

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ALKYLATION OF PHOSPHORYLMETHYLENETRIPHENYLPHOS-PHORANES

O.V.BYKHOVSKAYA, I.M.ALADZHEVA, I.V.LEONTIEVA, P.V.PETROVSKII, T.A.MASTRYUKOVA, and M.I.KABACHNIK A.N.Nesmeyanov Institute of Organo-Element Compounds, Academy of Sciences of the USSR, Vavilov Str. 28, Moscow 117334, USSR

Direction of alkylation of phosphoranes (I) depends on the nature of the substituent Y and the alkylating agent. Unsubstituted phosphorane reacts with $\mathrm{CH_3J}$ yielding only the product of C-methylation (II), whereas the reaction with $\mathrm{Me_2SO_4}$ proceeds at both ends of the OPC-triad, preferably yielding the O-alkylation product (IIIa, 80%).

$$R_{2}P(0)C(Y) = PPh_{3} \xrightarrow{R'X} R_{2}P(0)C(Y) \xrightarrow{R'} X^{-} + [R_{2}P(0R') = C(Y) = PPh_{3}]^{+} X^{-}$$
(II) (III) (III)

Y = H (a), Ts (b), COOEt (c), $P(O)Ph_2(d)$, C(O)Me(e), C(O)Ph(f); R = Ph, Bu; R' = Me, Et; X = J, ClO_4 , BF_4

Tosyl-, carbethoxy- and diphenylphosphoryl-substituted phosphoranes (I, b, c, d) do not react with CH_3J . Alkylation with Me_2SO_4 and $\text{Et}_3\ddot{\text{OBF}}_4$ proceeds at the oxygen of the PO group and stable salts (III, b, c, d) are obtained.

Methylation of acylsubstituted phosphoranes (I, e, f; R=Ph) with Me_2SO_4 proceeds at the oxygen of both PO and CO groups. The products of CO-alkylation $Ph_2P(O)C(Ph_3) = C(OMe)R''X^-$ (IV; R'' = Me, Ph) are stable; the PO-alkylation products (III, e, f) undergo an intramolecular Wittig reaction:

$$Ph_2P(OMe) = C(COR'')Ph_3X^- \longrightarrow Ph_2P(O)OMe + Ph_3PC = CR''X^-$$
(III e, f) $R'' = Me$, Ph

Alkylation of the benzoyl substituted compound (I f) with $\operatorname{Et}_3'\cdot\operatorname{BF}_4'$ yields more than 90% of the CO-ethylated product (IV, R" = Ph). A possible explanation of the different directions of alkylation is proposed.